Reference-Limited Compositional Zero-Shot Learning

Siteng Huang¹, Qiyao Wei², Donglin Wang^{3⊠} ¹Zhejiang University ²University of Cambridge ³Westlake University

ICMR 2023

Background

Compositional Zero-Shot Learning (CZSL)

- Given side information that describes novel composition pairs, CZSL aims to recognize **unseen** attributeobject compositions at test time while each constituent (i.e., **primitive**) exists in training samples.
- Relying on sufficient seen compositions and training samples to learn the compositionality.

Motivation

Two Core Challenges for Human-like Compositional Learning

- Few-shot. Humans can learn the compositionality of complex concepts with only a few examples.
- Few referential compositions. Humans can discover potential primitives from a few combinations, or even only one, based on prior knowledge.

• **Conclusion:** Existing CZSL setup is idealistic and inappropriate to simulate human-like compositional learning.

New Problem

Reference-Limited Compositional Zero-Shot Learning (RL-CZSL)

- Comparison among compositional zero-shot learning (CZSL), few-shot learning (FSL), and our proposed reference-limited compositional zero-shot learning (RL-CZSL).
- Different colors indicate different categories of entities or primitives.

Proposed Benchmarks RL-CZSL-ATTR & RL-CZSL-ACT

Table 1: Basic statistics of our proposed datasets. The symbol # is used as an abbreviation for "number of".

Dataset	RL-CZSL-ATTR	RL-CZSL-ACT		
Composition type	attribute-object	action-object		
Total #c	1,768	574		
#c in train / val / test	1,076 / 136 / 556	214 / 22 / 338		
Total #p ¹	190	185		
# p^1 in train / val / test	105 / 33 / 52	52 / 10 / 123		
Total #p ²	488	154		
# p^2 in train / val / test	281 / 12 / 195	59 / 11 / 84		
Total #samples	99,771	30,420		
#samples in train / val / test	51,928 / 29,922 / 17,921	20,604 / 1,207 / 8,609		

(a) RL-CZSL-ATTR: train (b) RL-CZSL-ATTR: val (c) RL-CZSL-ATTR: test

(d) RL-CZSL-ACT: train

(e) RL-CZSL-ACT: val

(f) RL-CZSL-ACT: test

Meta Compositional Graph Learner (MetaCGL)

Learning Composition Embeddings

- A graph that contains **all primitives** and **potential compositions** as nodes is constructed.
- The features of nodes are initialized with the pretrained word embeddings.
- The nodes of two primitives and a composition are connected one by one if the composition is formed by the two primitives, and a self-loop is added to each node.
- A multi-layer graph convolutional network (**GCN**) is used to update node features.

Meta Compositional Graph Learner (MetaCGL) Learning Visual Embeddings

 The learned primitive embeddings is transformed into a prior channel-wise correlation map to estimate which features are related to the prediction target.

$$m^{'(i)} = \sigma(\mathcal{M}^{1}([\text{GAP}(F); v_{p^{1};(i)}]) + \mathcal{M}^{2}([\text{GAP}(F); v_{p^{2};(i)}])),$$

$$F^{'(i)} = m^{'(i)} \otimes F,$$

• A **compatibility score** can be calculated with the visual embedding and the learned composition embedding:

$$s^{(i)} = e^{(i)} \odot v_{c^{(i)}},$$

• The **inference** prediction can be made by applying a argmax operation on all compatibility scores.

• The training loss:

$$\mathcal{L}_{x}(f_{\theta}) = -\log\left(\frac{\exp(s^{(i)})}{\sum_{j}^{|C|}\exp(s^{(j)})}\right),$$

Meta Compositional Graph Learner (MetaCGL) Training Strategy

Compositional Mixup Data Augmentation

• A new **augmented example** of image can be formed by a weighted linear interpolation of two random sampled query samples:

$$\tilde{x}_q^{(i)} = \lambda x_q^{(i)} + (1 - \lambda) x_q^{(j)},$$

where $\lambda \in [0, 1]$ is randomly drawn from Beta(1, 1).

• The augmented compositional label:

$$\begin{split} \tilde{c}_q^{(i)} &= \lambda^2 c_q^{(i)} + \lambda (1-\lambda) c_q^{(ij)} \\ &+ \lambda (1-\lambda) c_q^{(ji)} + (1-\lambda)^2 c_q^{(j)}, \end{split}$$

where

$$c_q^{(ij)} \,=\, (p^{1;(i)},p^{2;(j)}),\, c_q^{(ji)} \,=\, (p^{1;(j)},p^{2;(i)}).$$

Bi-level Optimization

- All the trainable parameters can be updated as $\begin{aligned} \theta^{'} &= \theta - \epsilon \nabla_{\theta} \mathcal{L}_{\mathcal{S}}(f_{\theta}), \\ \theta &\leftarrow \theta - \gamma \nabla_{\theta} \mathcal{L}_{\tilde{\mathcal{O}}}(f_{\theta^{'}}), \end{aligned}$
 - ϵ : the step size hyperparameter
 - γ : the meta step size hyperparameter
 - S : support samples
 - \tilde{Q} : augmented query samples

Experiments

Main Results

Table 2: Comparison with the baselines on two proposed benchmarks. Detailed results (%) are reported with 95% confidence intervals. Best results are displayed in boldface.

		R	L-CZSL-AT	TR		RL-CZSL-ACT					
Method	UA	SA	HM	Prim 1 HM	Prim 2 HM	UA	SA	HM	Prim 1 HM	Prim 2 HM	
					K_s^c :	= 1					
VisProd [21]	$1.24{\scriptstyle\pm0.43}$	$20.99{\scriptstyle\pm 0.18}$	$2.34{\scriptstyle\pm0.76}$	$25.44{\scriptstyle\pm2.15}$	$27.41{\scriptstyle\pm1.79}$	0.88±0.19	$21.97{\scriptstyle~\pm 0.56}$	$1.68{\scriptstyle\pm0.36}$	$26.12{\scriptstyle\pm1.78}$	$25.43{\scriptstyle\pm1.15}$	
LE [21]	1.01 ± 0.96	$14.98{\scriptstyle\pm0.52}$	$1.89{\scriptstyle\pm1.67}$	$22.25{\scriptstyle\pm0.90}$	$22.45{\scriptstyle\pm0.53}$	$1.27{\scriptstyle\pm 0.85}$	$14.02{\scriptstyle\pm0.18}$	2.32 ± 1.44	$17.90{\scriptstyle\pm3.28}$	$22.45{\scriptstyle\pm4.56}$	
TMN [25]	0.52 ± 0.50	28.31±0.39	$1.02{\scriptstyle\pm0.97}$	$24.86{\scriptstyle\pm1.59}$	$32.41{\scriptstyle\pm0.50}$	$0.62{\scriptstyle\pm0.34}$	$\textbf{28.85} {\scriptstyle\pm 0.10}$	$1.21{\scriptstyle\pm0.65}$	$31.76{\scriptstyle\pm0.37}$	$26.03{\scriptstyle\pm1.55}$	
SymNet [18]	$1.94{\scriptstyle\pm0.08}$	$17.34{\scriptstyle\pm0.80}$	$3.48{\scriptstyle\pm0.12}$	$27.01 {\scriptstyle \pm 1.05}$	$23.95{\scriptstyle\pm2.87}$	$2.28{\scriptstyle\pm1.71}$	$17.90{\scriptstyle\pm0.56}$	$4.01{\scriptstyle\pm2.72}$	$27.35{\scriptstyle\pm1.59}$	$23.02{\scriptstyle\pm2.82}$	
CompCos [19]	2.57 ± 0.55	$25.14{\scriptstyle\pm0.70}$	$4.66{\scriptstyle\pm0.93}$	$26.84{\scriptstyle\pm0.72}$	$33.53{\scriptstyle\pm2.39}$	$3.02{\scriptstyle\pm0.34}$	$28.19{\scriptstyle\pm0.55}$	$5.45{\scriptstyle\pm0.56}$	$\textbf{32.07} {\scriptstyle \pm 2.46}$	28.51±2.57	
CGE [22]	$4.65{\scriptstyle\pm1.12}$	$15.40{\scriptstyle\pm0.54}$	$7.13{\scriptstyle\pm1.29}$	$25.97{\scriptstyle\pm3.30}$	$31.56{\scriptstyle\pm1.26}$	$4.05{\scriptstyle\pm0.78}$	$15.51{\scriptstyle\pm0.91}$	$6.41{\scriptstyle\pm0.91}$	$28.56{\scriptstyle\pm2.09}$	$26.39{\scriptstyle\pm1.50}$	
MetaCGL (Ours)	10.44 ± 0.42	19.01 ± 1.78	$\boldsymbol{13.47} \pm 0.77$	$\textbf{30.22} \pm 1.58$	$\textbf{38.37} {\pm} 2.29$	7.76±0.31	$15.95{\scriptstyle\pm1.24}$	$\boldsymbol{10.44} {\scriptstyle\pm 0.41}$	$31.19{\scriptstyle\pm1.38}$	$26.68{\scriptstyle\pm2.76}$	
	$K_s^c = 5$										
VisProd [21]	$0.55 {\scriptstyle\pm 0.45}$	$15.83{\scriptstyle\pm0.60}$	$1.07{\scriptstyle\pm0.83}$	22.80 ± 2.59	$22.90{\scriptstyle\pm1.31}$	$0.18{\scriptstyle\pm0.14}$	$16.19{\scriptstyle\pm0.32}$	$0.35{\scriptstyle\pm 0.28}$	$13.72{\scriptstyle\pm1.80}$	$21.88{\scriptstyle\pm2.73}$	
LE [21]	0.72 ± 0.49	$13.79{\scriptstyle\pm0.02}$	$1.37{\scriptstyle\pm0.89}$	$21.14{\scriptstyle\pm0.89}$	$20.45{\scriptstyle\pm2.64}$	$1.23{\scriptstyle\pm1.01}$	$12.67{\scriptstyle\pm0.62}$	$2.23{\scriptstyle\pm1.66}$	$18.18{\scriptstyle\pm2.41}$	$18.88{\scriptstyle\pm2.24}$	
TMN [25]	0.27 ± 0.16	$\textbf{32.02} \pm 0.51$	$0.54{\scriptstyle\pm0.32}$	$26.53{\scriptstyle\pm0.60}$	$35.22{\scriptstyle\pm1.78}$	$0.30{\scriptstyle\pm0.29}$	$31.28{\scriptstyle\pm0.37}$	$0.59 {\scriptstyle \pm 0.57}$	$\textbf{34.03} {\pm} 1.07$	$27.35{\scriptstyle\pm1.43}$	
SymNet [18]	1.96 ± 0.95	$18.47{\scriptstyle~\pm 0.68}$	$3.54{\scriptstyle\pm1.54}$	$27.24{\scriptstyle\pm2.03}$	$24.47{\scriptstyle\pm2.57}$	$2.28{\scriptstyle\pm1.71}$	$17.90{\scriptstyle\pm0.56}$	$4.01{\scriptstyle\pm2.72}$	$27.35{\scriptstyle\pm1.59}$	$23.02{\scriptstyle\pm2.82}$	
CompCos [19]	1.05 ± 0.23	$31.62{\scriptstyle\pm0.54}$	$\pmb{2.03} {\scriptstyle\pm 0.44}$	$27.91{\scriptstyle\pm2.68}$	$34.71{\scriptstyle\pm2.69}$	$1.16{\scriptstyle\pm0.55}$	$\textbf{34.32} \pm 0.64$	$2.25{\scriptstyle\pm1.02}$	$32.59{\scriptstyle\pm 0.37}$	$26.66{\scriptstyle\pm2.82}$	
CGE [22]	$4.10{\scriptstyle\pm1.09}$	$17.03{\scriptstyle~\pm 0.13}$	$6.61{\scriptstyle\pm1.43}$	$25.06{\scriptstyle\pm 0.20}$	$31.04{\scriptstyle\pm0.84}$	$2.73{\scriptstyle\pm0.78}$	$19.12{\scriptstyle\pm0.65}$	4.78 ± 1.17	$25.57{\scriptstyle\pm2.48}$	$23.05{\scriptstyle\pm1.11}$	
MetaCGL (Ours)	$\boldsymbol{11.85} {\pm} 2.55$	$20.70{\scriptstyle\pm1.21}$	$\boldsymbol{15.05} \pm 1.81$	$\textbf{31.88}{\scriptstyle \pm 2.68}$	$\textbf{40.41} {\pm} 1.25$	8.01±0.23	$17.48{\scriptstyle\pm0.98}$	$\boldsymbol{10.99} {\pm} 0.23$	$32.93{\scriptstyle\pm1.73}$	28.01 ± 1.34	

UA (Unseen Accuracy): Accuracy of Unseen Compositions. **SA** (Seen Accuracy): Accuracy of Seen Compositions. **HM** (Harmonic mean) = 2 (SA * UA) / (SA + UA).

 $\frac{U \rightarrow S}{U \rightarrow U}$: The ratios of whether error cases from unseen compositions are confused for seen pairs (U \rightarrow S) or incorrect unseen pairs (U \rightarrow U). The **lower** the value, the **smaller** the trend of overfitting.

Experiments Ablation Study

	RL-0	CZSL-A	ГTR	RL-CZSL-ACT				
Model	UA	SA	HM	UA	SA	HM		
w/o <i>G</i>	8.64	11.90	9.99	5.16	6.55	5.77		
w/o \mathcal{M}	11.97	20.13	15.02	7.23	16.15	9.99		
w/o BO	1.25	13.70	2.28	0.85	13.88	1.60		
w/o CM	10.82	20.81	14.23	6.52	19.61	9.78		
Full	11.85	20.70	15.05	8.01	17.48	10.99		

Table 3: Ablation study with various model configurations of MetaCGL. G: the compositional graph. \mathcal{M} : the correlation map generating network. BO: the bi-level optimization strategy. CM: the Compositional Mixup data augmentation.

- The removal of any component from MetaCGL generally results in a worse performance on UA and HM.
- The **compositional graph** plays an important role in recognizing samples of **seen** compositions.
- The **bi-level optimization** significantly contributes to recognizing **unseen** compositions.
- The **Compositional Mixup** data augmentation improves UA while sacrificing SA.

Experiments Effect of Equipping MAML

Table 4: Comparison with CZSL baselines equipped with MAML. Our MetaCGL still achieves the best UA and HM.

	$K_s^c = 1$						$K_s^c = 5$					
Method	RL-CZSL-ATTR		RL-CZSL-ACT		RL-CZSL-ATTR			RL-CZSL-ACT				
	UA	SA	HM	UA	SA	HM	UA	SA	HM	UA	SA	HM
VisProd [21]	1.24	20.99	2.34	0.88	21.97	1.68	0.55	15.83	1.07	0.18	16.19	0.35
+MAML	3.53	20.76	6.03	1.72	21.50	3.18	3.76	29.71	6.67	2.23	28.60	4.13
LE [21]	1.01	14.98	1.89	1.27	14.02	2.32	0.72	13.79	1.37	1.23	12.67	2.23
+MAML	4.49	6.24	5.21	6.14	7.93	6.91	6.06	14.15	8.48	5.68	8.06	6.64
SymNet [18]	1.94	17.34	3.48	2.28	17.90	4.01	1.96	18.47	3.54	2.96	17.12	5.04
+MAML	3.62	4.48	4.00	4.91	4.47	4.65	3.40	4.14	3.69	3.61	4.74	4.10
CompCos [19]	2.57	25.14	4.66	3.02	28.19	5.45	1.05	31.62	2.03	1.16	34.32	2.25
+MAML	3.17	5.93	4.07	2.81	6.44	3.90	2.98	7.67	4.28	3.54	8.76	5.02
CGE [22]	4.65	15.40	7.13	4.05	15.51	6.41	4.10	17.03	6.61	2.73	19.12	4.78
+MAML	9.44	18.62	12.54	6.06	17.86	9.05	11.09	19.76	14.21	6.73	18.17	9.82
MetaCGL (Ours)	10.44	19.01	13.47	7.76	15.95	10.44	11.85	20.70	15.05	8.01	17.48	10.99

Take-home message

- We introduce a new problem named reference-limited compositional zero-shot learning (RL-CZSL), where given only a few samples of limited compositions, the model is required to generalize to recognize unseen compositions. This offers a more realistic and challenging environment for evaluating compositional learners.
- We establish **two benchmark datasets** with diverse compositional labels and well-designed data splits, providing the required platform for systematically assessing progress on the task.
- We propose a novel method, Meta Compositional Graph Learner (MetaCGL), for the challenging RL-CZSL problem. Experimental results show that MetaCGL consistently outperforms popular baselines on recognizing unseen compositions.

Thank you for listening!

Reference-Limited Compositional Zero-Shot Learning

Siteng Huang, Qiyao Wei, Donglin Wang

Contact: huangsiteng@westlake.edu.cn

arXiv

Project page

Github