Research Question

Can we calibrate the "layout hallucination" in pre-trained text-to-image generators in real-time without layout annotations?

Contributions

- devise a training-free layout calibration system SimM that intervenes in the generative process on the fly during inference time.
- present a benchmark SimMBench that compensates for the lack of superlative spatial relations in existing datasets.
- report both quantitative and qualitative results to demonstrate the effectiveness in automatically calibrating the layout inconsistencies.

Preliminaries

- Stable Diffusion leverages cross-attention layers to incorporate textual cues for the control of the image generation.
- For the object corresponding to the *k*-th token of the prompt, higher activations on the intermediate cross-attention maps indicate the approximate position where the object will appear.

Our SimM system follows a "check-locate-rectify" pipeline:

Check

- detects the presence of object layout requirements in the textual prompts with predefined positional vocabulary.
- generates approximate target layout for each object by parsing the prompt and applying heuristic rules.
- assesses any discrepancies between the generated image and the specified layout requirements.

Overview

Check, Locate, Rectify: A Training-Free Layout Calibration **System for Text-to-Image Generation** Siteng Huang* Yutong Feng Shiwei Zhang Yuyuan Li Yu Liu Biao Gong*⊠

Alibaba Group & Zhejiang University

• identifies the source activated region for each object during the early denoising steps.

Rectify

- transfers the located activations to the target regions.
- adjusts the transferred activations with intra-/inter-map activation enhancement and suppression.

"a green pepper to the left of a red pepper"

"a photo of van and dining table; dining table is right to van"

SimMBench:

- 203 prompts, focusing superlative relations
- 28 items, including sin word, phrase, and thos with color

quantities (e-g), and resolutions (h-i):

Main Results

		DrawBench [35]		SimMBench	
g on	Methods	Accuracy	CLIP-Score	Accuracy	CLIP-Score
	Stable Diffusion [32]	12.50	0.3267	4.25	0.3012
	BoxDiff [40]	30.00	0.3239	24.08	0.3032
ngle-	Layout-Guidance [6]	36.50	0.3354	25.50	0.3020
se	Attention-Refocusing [25]	43.50	0.3339	50.71	0.3017
	SimM (Ours)	53.00	0.3423	65.16	0.3001

Calibration results across various position requirements (a-d), object

on the bottom a mountain on the top.

(h) A boy on the left looked up at the aurora on the top right.

"a large present with a red ribbon to the left of a Christmas tree"

For more experimental results, please refer to our paper.

(1) Eiffel Tower with a storm on the botton

"a brown trash bin with a green compost bin on its left and a blue recycling bin on its right"

Visit https://simm-t2i.github.io/SimM for more information.