Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting

Published in Proceedings of CIKM 2019 (Short Paper, Oral), 2019

In this paper, we propose a dual self-attention network (DSANet) for multivariate time series forecasting, especially for dynamic-period or nonperiodic series. DSANet completely dispenses with recurrence and utilizes two parallel convolutional components, called global temporal convolution and local temporal convolution, to capture complex mixtures of global and local temporal patterns. Moreover, DSANet employs a self-attention module to model dependencies between multiple series. To further improve the robustness, DSANet also integrates a traditional autoregressive linear model in parallel to the non-linear neural network. Experiments on real-world multivariate time series data show that the proposed model is effective and outperforms baselines.

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.